

香港高等教育科技學院

The Study of Kinetics and Kinematics of Single-Leg Landing Tasks Between Males and Females Using Inertial Measurement Units (IMU)

and Force-Plate

SRM Thei

Mr HO Chiu Wai, BSocSc (Hons) in Sports and Recreation Management,
Department of Sport and Recreation
Supervisor: Mr Indy HO Man Kit, Assistant Professor

Background

- Various sports frequently incorporate single-leg landing (SLL)
- 70% to 90% ACL injuries occur as non-contact injuries
- Often associated with single-leg landings
- Numerous systematic investigations gender disparities concerning that females tend to exhibit greater knee abduction motion
- However, a limited number of studies have delved into the kinetic and kinematic aspects of whole-body rotation during single-leg landings, encompassing both male and female participants

 To investigate the gender differences in the kinetics and kinematics of single-leg landing tasks

High: 30 cm

Distance: 20 cm

Methods

- Quasi-experimental design, one-shot study
- Total number of subjects: N = 30, 15 male; 15 female)
- U Warm-up (Stationary bike) and familiarization section
- Equip IMUs, Synchronization of IMUs and Force Plate

IMUs Location

Perform 2 testing conditions:

- 1) Single-Leg Drop Landing (SLL) (Dominant leg) x 3
- 2) Single-leg drop landing + 90-degree Rotation (SLLR)

(Dominant leg) x 3

Notes: 1-minute rest between tests

Statistical analysis

- IBM SPSS Statistics 27.0 & Microsoft Excel (2023)
- Normal distribution -> Shapiro-Wilk test (P > 0.05)
- Two-way repeated measures analysis of variance (ANOVA) & Post-hoc (Bonferroni)

Findings

Reliability index (ICC) of SLL & SLLR:

SLL (vGRF)	Male Moderate (.64) (p<.001) Female Excellect (.91) (p<.001)	All con
SLLR (vGRF)	Male Good (.79) (p<.001) Female Excellect (.95) (p<.001)	Mode
SLL	Male Excellect (.91) (p<.001)	Excellect (p<.
(Knee valgus) SLLR	Female Excellect (.68) (p<.001) Male Poor (.46) (p=.002)	(Exce
(Knee valgus)	Female Moderate (.65) (p<.001)	J_

All conditions:

<u>Moderate to</u>

<u>Excellect reliability</u>

(p<.001)

(Except Male

SLLR)

Knee valgus x gender
 No significant (p>.05)

Conclusion

- The current study found no gender differences in the two landing tasks (SLL & SLLR)
- Men showed greater ground reaction forces and knee valgus angles in rotational landings, potentially raising the ACL injury risk
- Gender-specific training is recommended for injury prevention and performance
- More research is needed on gender effects in rotational landings for sports safety and effectiveness

